
Wai-Meng Kwok, PhD
Director of Basic Science Research, Professor
Contact Information
Education
Research Experience
- Rats
Research Interests
Methodologies and Techniques
Electrophysiology (voltage clamp: whole-cell, single channel; current clamp)
Planar lipid bilayer electrophysiology
Biochemical assays
Protein mutagenesis
Bioenergetics measurements
Microscopy (fluorescence, confocal)
Immunohistochemistry
Transfection
Mitochondrial ion channels
Post-translational modifications of mitochondrial ion channels in response to stress
Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress via reactive oxygen and nitrogen species (ROS, RNS) are central in the etiology of numerous human maladies, including neurodegenerative and cardiac diseases. One of the vital proteins that regulate mitochondrial function/dysfunction is the voltage dependent anion channel 1 (VDAC1), the most abundant protein on the outer mitochondrial membrane (OMM) and a major regulatory gateway in and out of the organelle. Because of its pivotal roles in the exchange of metabolites and ions, and mediating cell death, VDAC1 is known as the gatekeeper for mitochondrial function. Post-translational modifications (PTMs, for example phosphorylation, nitrosylation, and nitration) of VDAC1 have been implicated in a number of diseases, but the consequences of PTMs on VDAC1 function and subsequently on mitochondrial and cellular functions are not well understood. Thus, our overall goal is to unravel the functional significance and consequence of PTMs on VDAC1. We employ a highly orchestrated approach that includes electrophysiology, molecular biology, mitochondrial biology, proteomics and transgenic animal models to investigate how functional and structural changes in VDAC1 tip the balance between cell survival and cell death. Our long term goal is to delineate how PTMs of VDAC1 contribute to the pathogenesis of ischemic heart disease as well as other mitochondrial-related diseases, such as Huntington’s and Alzheimer’s.
Other projects in collaboration with the department’s mitochondrial research group investigate the regulation of mitochondrial calcium. Projects include the investigation of a) LETM1 as a calcium-hydrogen exchanger and its significance in contributing to mitochondrial calcium homeostasis in disease, b) changes in calcium dynamics in the MAM domain in exercise-induced cardioprotection, and c) the role of the mitochondrial sodium/calcium exchanger in cytosolic calcium handling following mild traumatic brain injury.